Black Carbon and Aerosol Analysis in Rain and Snow During SUPRECIP - 2

O. Hadley, C. Corrigan, and V. Ramanathan

Center for Clouds, Chemistry, and Climate (C4)
Scripps Institution of Oceanography
University of California, San Diego

Introduction:

Transport of Asian BC (Black Carbon) across the Pacific Ocean is significant during March and April (Hadley et al. submitted June 2006)

Transport occurs predominantly at higher elevations (>1 km) (Heald et al. 2006) and therefore may impact mountain snowpack albedo and melt rates (Jacobson MZ, 2004; Hansen J and Nazarenko L, 2004;)

We aim to measure the concentration of BC in falling snow and rain to:

- (a) compare BC in coastal rainwater to inland mountain snow fall and
- (b) determine if it is large enough to impact snowpack lifetime in the California mountains.

Motivations: Long range transport of aerosols CFORS (Chemical FORecast System model - April 2004

BC total transport 25 – 32 Ggrams

77% of estimated North American monthly BC emissions (Hadley et al. subm. 2006)

Fine Mass transport 900 – 1100 Ggrams

Predictions (CFORS) vs. observations

Goals of the experiment

- Measure black carbon concentration in snow and rain, both upwind and downwind of local pollution sources.
 - Are BC concentrations significant enough to enhance springtime melting of the mountain snow pack?
- Look at chemical components in the precipitation as an indicator of origin.
 - Could Asian aerosols be influencing snow melt?

Ambient BC and light scatter at Mt. Lassen Natl. Park 2006

Successful Snow Collection Season

- •Site in operation from Feb 26 to April 30th.
- Over 20 samples collected at CSSL

Over 80 samples collected at all 3 sites combined.

Black Carbon observed in Precipitation

- 200 mL of precipitation sample are vacuum filtered through quartz fiber filters.
- Color change indicates not only BC, but the presence of yellow or red dust in the rain sample.

Accurate Measurements of Black Carbon are very Difficult to Make!!!

- We use 2 independent methods to determine BC concentration.
- Method 1: Evolved Gas Analysis
- Method 2: Spectral Light Transmission Method.

Method 1. Evolved Gas Analysis, Thermo-Optical Transmittance (EGA-TOT)

- Filters are heated from 50°C to 800°C in an oxygenated atmosphere
- Organics are oxidized to CO_2 at T < ≈ 500°C and BC or soot at T > ≈ 500°C

$$BC = \int_{T \approx 500^{\circ}C}^{T = 800^{\circ}C} \frac{\left(P_{CO_{2}}\left(\frac{moles\ CO_{2}}{mole\ O_{2}}\right) * O_{2}\left(\frac{moles}{L}\right) * 0.2\left(\frac{L_{O_{2}}}{min}\right) * 12\left(\frac{g}{mole\ C}\right)\right)}{\left(40\left(\frac{c}{min}\right) * 1.15\right)} dT$$

Method 2. SLTM

- Method is sensitive mainly to particle light absorption, not scattering
- Widely used to measure aerosol light absorption: Aethalometer, Particle Soot Absorption Photometer (PSAP)
- Continuous light spectra from (370-1200 nm), BC mass is taken at 880 nm
- Sigma (mass absorption efficiency) is set at 20 m² g⁻¹; A = 0.69 m²

EGA-TOT vs. SLTM

Tested 7 filters made from Trinidad Head bulk gauge water bucket.

- •Standard deviation is 5% for SLTM and 13% for EGA-TOT.
- •Agreement between the two methods is within 6%

Challenges with measuring BC in Water

- Determine efficiency of BC collection on the quartz fiber filter (these filters must be used for both types of analysis)
 - 1. Use SEM to look at sizes of particles that pass through the filter.
 - 2. Evaluate the efficiency of the filter using a known BC standard.
- Evaluate BC losses to surfaces during collection and analysis

SEM images of Snow Melt from Lassen

Standard for BC in water to calibrate filter efficiency

T. Kirchstetter's group 2006

- Standard is used to calibrate filter efficiency.
- To get a suspension of soot in water it must be artificially aged by reacting with ozone.
- The soot is then bubbled through distilled water to make the standard.
- A) no ozone
- B) ozone reacted

Mt. Lassen Volcano Natl. Park and Central Sierra Snow Lab: XRF analysis of snow melt water

Further work...

- Complete measurements of BC concentration in rainwater and snow meltwater.
- Compare the evolution of BC and elemental signatures as a storm moves from the coast to Sierras.
- Place BC concentrations into context with previous work on solar absorption by soot and enhanced snowpack melt.

Acknowledgements

California Energy Commission

Guido Franco - CEC

Daniel Rosenfeld - Institute of Earth Sciences
Hebrew University of Jerusalem

Steven Cliff - UC Davis.

Randall Osterhuber - Central Sierra Snow Lab.

Nancy Nordensten & Mike Magnusen - US Nat. Park Service

Mike Ives - Humboldt State Marine Lab

Tom Kirchstetter - Lawrence Berkeley Nat. Lab.

